Reproduced with permission from NeXT Computer, Inc., USA, NeXT on Campus, Spring 1992. © 1992 NeXT Computer, Inc., USA

ENGINEERING

SPEL: The Signal Processing Educational Laboratory *University of Michigan*

Assistant Professor of Electrical Engineering and Computer Science Gregory Wake®eld says that if he and his 12 University of Michigan student researchers had not used NeXT computers for a research project on acoustical and auditory signal processing, the project might never have gotten off the groundĐlet alone into the hands of researchers at Ford Motor Company.

^aIf we weren't using NeXT machines, we would have needed a support staff of software engineers and hackers,^o explains Wake®eld. ^aWe would never have been able to take the project this far on another platform.

^aInterface Builder, the App Kit, and Sound Kits were key,^o he continues. ^aThey allowed us to build flexible apps in an intuitive fashion. NeXT's multimedia props were also very important. In fact, that's why we purchased the machines in the ®rst place. We saw a lot of value in having video, audio, and text capability in one machine. The quality and availability of third-party software on the NeXT were also important factors to us.^o

With NeXT technology, Wake®eld and students created a digital signal processing system that simulates how the human ear reacts in a variety of acoustical environments. Since 1989, Ford Motor Company has been integrating the research into the sound-quality evaluation and design of the company's future carsĐusing the DSP system to determine how the human ear responds to a particular power-train noise, for example.

^aWe've helped Ford close the loop on several auditory design questions,^o says Wake®eld. ^aThe project has had tremendous impact on the car designs we'll be seeing in the future.^o

Back in the classroom, Wake®eld has developed customized software using NeXTSTEP to teach his seniors and ®rst-year graduate students about signal processing. Called Signal Processing Educational Laboratory (SPEL), the application is an exploratory tool used for signal analysis, design, and visualization. SPEL is organized around a set of applications that run within the SPEL environment. Each application is tracked by a SPEL manager that permits the user to transfer results from one application to another. For

example, the user can edit the temporal representation of a signal, then play it, perform basic algebraic and transform operations on it, and then save it.

^aSPEL provides a very flexible way for students to explore sound,^o says Wake®eld. ^aThey can see and hear signals, change and manipulate them, and then immediately view the outcome. With textbooks, students are only provided with a simple picture of signals. There's no opportunity for trying out alternative ®lter designs and seeing what happens.^o

Wake®eld further credits the flexibility of the NeXT environment for helping him get the SPEL project off the ground: ^aThe most dif®cult thing about writing an educational application is creating a good user interface,^o he says. ^aIt takes a lot of revision. There's just no systematic way to do it the ®rst timeĐand I didn't have a lot of time to spare. I had seen other windowing environments which were flexible, but took three pages of code to get the words `Hello, World' to pop up on screen. That's not a productive use of my time.

^aIn creating SPEL, we've really taken advantage of Interface Builder,^o he says. ^aWe can lay down the algorithms and just play them out on the screen, thereby experimenting with a number of alternatives. This isn't possible in other development environments.^o

Wake®eld says he originally attempted to create the SPEL application on an alternative UNIX workstation, but the project never got off the ground because of ^athe long development cycle involved in designing a student-proof application on that workstation.^o

^aSPEL could have taken years to create,^o he says, ^abut on a NeXT machine, the development cycle was two months. If I didn't have Interface Builder and the object kits, I would not have been able to create SPEL in the time I did.^o

GREGORY H. WAKEFIELD ASSISTANT PROFESSOR OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE UNIVERSITY OF MICHIGAN ANN ARBOR, MI 48109 (313) 763-8040 spel@horowitz.eecs.umich.edu